Journal of Skin and Stem Cell

Published by: Kowsar

Bio - Conductive Scaffold Based on Agarose - Polyaniline for Tissue Engineering

Payam Zarrintaj 1 , * , Iraj Rezaeian 1 , ** , Behnaz Bakhshandeh 2 , Behnam Heshmatian 3 and Mohammad Reza Ganjali 4 , 5
Authors Information
1 School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
3 Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
4 Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
5 Biosensor Research Center, Endocrinology and Metabolism Molecular - Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
Corresponding Authors:
Article information
  • Journal of Skin and Stem Cell: June 2017, 4 (2); e67394
  • Published Online: June 30, 2017
  • Article Type: Research Article
  • Received: April 27, 2017
  • Revised: May 20, 2017
  • Accepted: June 14, 2017
  • DOI: 10.5812/jssc.67394

To Cite: Zarrintaj P, Rezaeian I, Bakhshandeh B, Heshmatian B, Ganjali M R. Bio - Conductive Scaffold Based on Agarose - Polyaniline for Tissue Engineering, J Skin Stem Cell. 2017 ; 4(2):e67394. doi: 10.5812/jssc.67394.

Copyright © 2017, Journal of Skin and Stem Cell. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, et al. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev. 2017;33(2):144-72. doi: 10.1080/02648725.2018.1430464. [PubMed: 29385962].
  • 2. Hafshejani TM, Zamanian A, Venugopal JR, Rezvani Z, Sefat F, Saeb MR, et al. Antibacterial glass-ionomer cement restorative materials: A critical review on the current status of extended release formulations. J Control Release. 2017;262:317-28. doi: 10.1016/j.jconrel.2017.07.041. [PubMed: 28774841].
  • 3. Nonahal M, Rastin H, Saeb MR, Ganjaee Sari M, Hamedian Moghadam M, Zarrintaj P, et al. Epoxy/PAMAM dendrimer-modified graphene oxide nanocomposite coatings: Nonisothermal cure kinetics study. Progr Org Coating. 2018;114:233-43. doi: 10.1016/j.porgcoat.2017.10.023.
  • 4. Ganjaee Sari M, Saeb MR, Shabanian M, Khaleghi M, Vahabi H, Vagner C, et al. Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Progr Org Coating. 2018;115:143-50. doi: 10.1016/j.porgcoat.2017.11.016.
  • 5. Zarrintaj P, Moghaddam AS, Manouchehri S, Atoufi Z, Amiri A, Amirkhani MA, et al. Can regenerative medicine and nanotechnology combine to heal wounds? The search for the ideal wound dressing. Nanomedicine (Lond). 2017;12(19):2403-22. doi: 10.2217/nnm-2017-0173. [PubMed: 28868968].
  • 6. Zarrintaj P, Urbanska AM, Gholizadeh SS, Goodarzi V, Saeb MR, Mozafari M. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. J Colloid Interface Sci. 2018;516:57-66. doi: 10.1016/j.jcis.2018.01.044. [PubMed: 29408144].
  • 7. Zarrintaj P, Manouchehri S, Ahmadi Z, Saeb MR, Urbanska AM, Kaplan DL, et al. Agarose-based biomaterials for tissue engineering. Carbohydr Polym. 2018;187:66-84. doi: 10.1016/j.carbpol.2018.01.060. [PubMed: 29486846].
  • 8. Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR. A Novel Electroactive Agarose-Aniline Pentamer Platform as a Potential Candidate for Neural Tissue Engineering. Sci Rep. 2017;7(1):17187. doi: 10.1038/s41598-017-17486-9. [PubMed: 29215076]. [PubMed Central: PMC5719440].
  • 9. Atoufi Z, Zarrintaj P, Motlagh GH, Amiri A, Bagher Z, Kamrava SK. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. J Biomater Sci Polym Ed. 2017;28(15):1617-38. doi: 10.1080/09205063.2017.1340044. [PubMed: 28589747].
  • 10. Guo B, Glavas L, Albertsson A-C. Biodegradable and electrically conducting polymers for biomedical applications. Progr Polymer Sci. 2013;38(9):1263-86. doi: 10.1016/j.progpolymsci.2013.06.003.
  • 11. Chen J, Yu M, Guo B, Ma PX, Yin Z. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J Colloid Interface Sci. 2018;514:517-27. doi: 10.1016/j.jcis.2017.12.062. [PubMed: 29289734].
  • 12. Wang L, Wu Y, Hu T, Guo B, Ma PX. Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomater. 2017;59:68-81. doi: 10.1016/j.actbio.2017.06.036. [PubMed: 28663141].
  • 13. Zhang M, Guo B. Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering. Macromol Biosci. 2017;17(9). doi: 10.1002/mabi.201700147. [PubMed: 28671759].
  • 14. Dong R, Zhao X, Guo B, Ma PX. Biocompatible Elastic Conductive Films Significantly Enhanced Myogenic Differentiation of Myoblast for Skeletal Muscle Regeneration. Biomacromolecules. 2017;18(9):2808-19. doi: 10.1021/acs.biomac.7b00749. [PubMed: 28792734].
  • 15. Milan PB, Lotfibakhshaiesh N, Joghataie MT, Ai J, Pazouki A, Kaplan DL, et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater. 2016;45:234-46. doi: 10.1016/j.actbio.2016.08.053. [PubMed: 27591919]. [PubMed Central: PMC5069185].
  • 16. Gholipourmalekabadi M, Samadikuchaksaraei A, Seifalian AM, Urbanska AM, Ghanbarian H, Hardy JG, et al. Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomed Mater. 2018;13(3):35003. doi: 10.1088/1748-605X/aa999b. [PubMed: 29125135].
  • 17. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34-47. doi: 10.1016/j.biomaterials.2017.01.011. [PubMed: 28107663].
  • 18. Saikia JP, Banerjee S, Konwar BK, Kumar A. Biocompatible novel starch/polyaniline composites: characterization, anti-cytotoxicity and antioxidant activity. Colloids Surf B Biointerfaces. 2010;81(1):158-64. doi: 10.1016/j.colsurfb.2010.07.005. [PubMed: 20674287].
  • 19. Guo B, Lei B, Li P, Ma PX. Functionalized scaffolds to enhance tissue regeneration. Regen Biomater. 2015;2(1):47-57. doi: 10.1093/rb/rbu016. [PubMed: 25844177]. [PubMed Central: PMC4383297].
  • 20. Vaghela C, Kulkarni M, Karve M, Aiyer R, Haram S. Agarose–guar gum assisted synthesis of processable polyaniline composite: morphology and electro-responsive characteristics. RSC Adv. 2014;4(104):59716-25. doi: 10.1039/c4ra08688k.
  • 21. Chauhan NPS, Meghwal K, Gholipourmalekabadi M, Mozafari M. Polyaniline-Based Blends: Natural Rubber and Synthetic Rubber. Polyaniline Blends, Composites, and Nanocomposites. Elsevier; 2018. p. 149-74.
  • 22. Zhang L, Li Y, Li L, Guo B, Ma PX. Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. Reactive and Functional Polymers. 2014;82:81-8. doi: 10.1016/j.reactfunctpolym.2014.06.003.
  • 23. Zhao X, Li P, Guo B, Ma PX. Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater. 2015;26:236-48. doi: 10.1016/j.actbio.2015.08.006. [PubMed: 26272777].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments