Journal of Skin and Stem Cell

Published by: Kowsar

Scarless Wound Healing: Looking for a Single Remedy With Multiple Targets

Samila Farokhimanesh 1 , Mohammad Ali Nilforoushzade 2 , Nahid Nikkhah 2 , Ali Komeili 3 and Mehrak Zare 2 , *
Authors Information
1 Department of Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
2 Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
3 Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
Article information
  • Journal of Skin and Stem Cell: March 2017, 4 (2); e67299
  • Published Online: April 30, 2017
  • Article Type: Review Article
  • Received: February 14, 2017
  • Accepted: February 27, 2017
  • DOI: 10.5812/jssc.67299

To Cite: Farokhimanesh S, Nilforoushzade M A, Nikkhah N, Komeili A, Zare M. et al. Scarless Wound Healing: Looking for a Single Remedy With Multiple Targets, J Skin Stem Cell. 2017 ;4(2):e67299. doi: 10.5812/jssc.67299.

Abstract
Copyright © 2017, Journal of Skin and Stem Cell. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Footnote
References
  • 1. Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, et al. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg. 2015;135(3):907-17. doi: 10.1097/PRS.0000000000000972. [PubMed: 25719706].
  • 2. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94.
  • 3. Hu MS, Maan ZN, Wu JC, Rennert RC, Hong WX, Lai TS, et al. Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng. 2014;42(7):1494-507. doi: 10.1007/s10439-014-1010-z. [PubMed: 24788648].
  • 4. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314-21. doi: 10.1038/nature07039. [PubMed: 18480812].
  • 5. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738-46. doi: 10.1056/NEJM199909023411006. [PubMed: 10471461].
  • 6. Cass DL, Meuli M, Adzick NS. Scar wars: implications of fetal wound healing for the pediatric burn patient. Pediatr Surg Int. 1997;12(7):484-9. doi: 10.1007/BF01258707. [PubMed: 9238112].
  • 7. Asuku ME, Ibrahim A, Ijekeye FO. Post-burn axillary contractures in pediatric patients: a retrospective survey of management and outcome. Burns. 2008;34(8):1190-5.
  • 8. Egeland B, More S, Buchman SR, Cederna PS. Management of difficult pediatric facial burns: reconstruction of burn-related lower eyelid ectropion and perioral contractures. J Craniofac Surg. 2008;19(4):960-9. doi: 10.1097/SCS.0b013e318175f451. [PubMed: 18650718].
  • 9. Leung A, Crombleholme TM, Keswani SG. Fetal wound healing: implications for minimal scar formation. Curr Opin Pediatr. 2012;24(3):371-8. doi: 10.1097/MOP.0b013e3283535790. [PubMed: 22572760].
  • 10. Pastar I, Ramirez H, Stojadinovic O, Brem H, Kirsner RS, Tomic-Canic M. Micro-RNAs: New Regulators of Wound Healing. Surg Technol Int. 2011;21:51-60. [PubMed: 22504970].
  • 11. Leavitt T, Hu MS, Marshall CD, Barnes LA, Lorenz HP, Longaker MT. Scarless wound healing: finding the right cells and signals. Cell Tissue Res. 2016;365(3):483-93. doi: 10.1007/s00441-016-2424-8. [PubMed: 27256396].
  • 12. Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM, Zhang GZ. Biological functions of microRNAs: a review. J Physiol Biochem. 2011;67(1):129-39. doi: 10.1007/s13105-010-0050-6. [PubMed: 20981514].
  • 13. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147-54. doi: 10.1016/S1672-0229(08)60044-3. [PubMed: 20172487].
  • 14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. [PubMed: 14744438].
  • 15. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343-9. doi: 10.1038/nature02873. [PubMed: 15372041].
  • 16. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS. Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol. 2005;15(3):331-41. doi: 10.1016/j.sbi.2005.05.006. [PubMed: 15925505].
  • 17. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11(9):597-610. doi: 10.1038/nrg2843. [PubMed: 20661255].
  • 18. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function. Thromb Haemost. 2012;107(4):605-10. doi: 10.1160/TH11-12-0836. [PubMed: 22318703].
  • 19. Cheng J, Yu H, Deng S, Shen G. MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. Tohoku J Exp Med. 2010;221(3):203-9. [PubMed: 20543536].
  • 20. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432-7. doi: 10.1073/pnas.0611192104. [PubMed: 17360662].
  • 21. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):438-47. doi: 10.1681/ASN.2009050530. [PubMed: 20056746].
  • 22. Zhao F, Wang Z, Lang H, Liu X, Zhang D, Wang X, et al. Dynamic Expression of Novel MiRNA Candidates and MiRNA-34 Family Members in Early- to Mid-Gestational Fetal Keratinocytes Contributes to Scarless Wound Healing by Targeting the TGF-beta Pathway. PLoS One. 2015;10(5). e0126087. doi: 10.1371/journal.pone.0126087. [PubMed: 25978377].
  • 23. Horsburgh S, Fullard N, Roger M, Degnan A, Todryk S, Przyborski S, et al. MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond). 2017;131(15):1923-40. doi: 10.1042/CS20170039. [PubMed: 28705953].
  • 24. Mills SJ, Cowin AJ. MicroRNAs and their roles in wound repair and regeneration. Wound Pract Res J Aust Wound Manag Assoc. 2013;21(1):26.
  • 25. Gras C, Ratuszny D, Hadamitzky C, Zhang H, Blasczyk R, Figueiredo C. miR-145 Contributes to Hypertrophic Scarring of the Skin by Inducing Myofibroblast Activity. Mol Med. 2015;21:296-304. doi: 10.2119/molmed.2014.00172. [PubMed: 25876136].
  • 26. Lang H, Zhao F, Zhang T, Liu X, Wang Z, Wang R, et al. MicroRNA-149 contributes to scarless wound healing by attenuating inflammatory response. Mol Med Rep. 2017;16(2):2156-62. doi: 10.3892/mmr.2017.6796. [PubMed: 28627609].
  • 27. Xiao K, Luo X, Wang X, Gao Z. MicroRNA185 regulates transforming growth factorbeta1 and collagen1 in hypertrophic scar fibroblasts. Mol Med Rep. 2017;15(4):1489-96. doi: 10.3892/mmr.2017.6179. [PubMed: 28259900].
  • 28. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010;126(4):1172-80. doi: 10.1097/PRS.0b013e3181eae781. [PubMed: 20885241].
  • 29. Larijani B, Ghahari A, Warnock GL, Aghayan HR, Goodarzi P, Falahzadeh K, et al. Human fetal skin fibroblasts: Extremely potent and allogenic candidates for treatment of diabetic wounds. Med Hypotheses. 2015;84(6):577-9. doi: 10.1016/j.mehy.2015.03.004. [PubMed: 25784640].
  • 30. Hirt-Burri N, Ramelet AA, Raffoul W, de Buys Roessingh A, Scaletta C, Pioletti D, et al. Biologicals and fetal cell therapy for wound and scar management. ISRN Dermatol. 2011;2011:549870. doi: 10.5402/2011/549870. [PubMed: 22363853].
  • 31. Hirt-Burri N, Scaletta C, Gerber S, Pioletti DP, Applegate LA. Wound-healing gene family expression differences between fetal and foreskin cells used for bioengineered skin substitutes. Artif Organs. 2008;32(7):509-18. doi: 10.1111/j.1525-1594.2008.00578.x. [PubMed: 18638304].
  • 32. Zuliani T, Saiagh S, Knol AC, Esbelin J, Dreno B. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One. 2013;8(7). e70408. doi: 10.1371/journal.pone.0070408. [PubMed: 23894651].
  • 33. Applegate LA, Scaletta C, Hirt-Burri N, Raffoul W, Pioletti D. Whole-cell bioprocessing of human fetal cells for tissue engineering of skin. Skin Pharmacol Physiol. 2009;22(2):63-73. doi: 10.1159/000178865. [PubMed: 19188754].
  • 34. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, Chaubert P, Gerber S, Scaletta C, et al. Tissue engineered fetal skin constructs for paediatric burns. Lancet. 2005;366(9488):840-2. doi: 10.1016/S0140-6736(05)67107-3. [PubMed: 16139659].
  • 35. De Buys Roessingh AS, Hohlfeld J, Scaletta C, Hirt-Burri N, Gerber S, Hohlfeld P, et al. Development, Characterization, and Use of a Fetal Skin Cell Bank for Tissue Engineering in Wound Healing. Cell Transplant. 2017;15(8-9):823-34. doi: 10.3727/000000006783981459.
  • 36. Ramelet AA, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, Offord E, et al. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol. 2009;44(3):208-18. doi: 10.1016/j.exger.2008.11.004. [PubMed: 19049860].
  • 37. Jackson WM, Nesti LJ, Tuan RS. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012;3(3):20. doi: 10.1186/scrt111. [PubMed: 22668751].
  • 38. Jackson WM, Nesti LJ, Tuan RS. Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells. Stem Cells Transl Med. 2012;1(1):44-50. doi: 10.5966/sctm.2011-0024. [PubMed: 23197639].
  • 39. Ennis WJ, Sui A, Bartholomew A. Stem Cells and Healing: Impact on Inflammation. Adv Wound Care (New Rochelle). 2013;2(7):369-78. doi: 10.1089/wound.2013.0449. [PubMed: 24587974].
  • 40. Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7. e2062. doi: 10.1038/cddis.2015.327. [PubMed: 26794657].
  • 41. Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316(14):2213-9. doi: 10.1016/j.yexcr.2010.05.009. [PubMed: 20471978].
  • 42. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008;3(4). e1886. doi: 10.1371/journal.pone.0001886. [PubMed: 18382669].
  • 43. Seo BF, Jung SN. The Immunomodulatory Effects of Mesenchymal Stem Cells in Prevention or Treatment of Excessive Scars. Stem Cells Int. 2016;2016:6937976. doi: 10.1155/2016/6937976. [PubMed: 26839566].
  • 44. Akita S, Yoshimoto H, Ohtsuru A, Hirano A, Yamashita S. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat Prot Dosimetry. 2012;151(4):656-60. doi: 10.1093/rpd/ncs176. [PubMed: 22914335].
  • 45. Spiekman M, van Dongen JA, Willemsen JC, Hoppe DL, van der Lei B, Harmsen MC. The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment. J Tissue Eng Regen Med. 2017;11(11):3220-35. doi: 10.1002/term.2213. [PubMed: 28156060].
  • 46. Yun IS, Jeon YR, Lee WJ, Lee JW, Rah DK, Tark KC, et al. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study. Dermatol Surg. 2012;38(10):1678-88. doi: 10.1111/j.1524-4725.2012.02495.x. [PubMed: 22804839].
  • 47. Zhang Q, Liu LN, Yong Q, Deng JC, Cao WG. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res Ther. 2015;6:145. doi: 10.1186/s13287-015-0133-y. [PubMed: 26282394].
  • 48. Wang L, Hu L, Zhou X, Xiong Z, Zhang C, Shehada HMA, et al. Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Sci Rep. 2017;7(1):13321. doi: 10.1038/s41598-017-12919-x. [PubMed: 29042658].
  • 49. Mak K, Manji A, Gallant-Behm C, Wiebe C, Hart DA, Larjava H, et al. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J Dermatol Sci. 2009;56(3):168-80. doi: 10.1016/j.jdermsci.2009.09.005. [PubMed: 19854029].
  • 50. Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res. 2003;82(8):621-6. doi: 10.1177/154405910308200810. [PubMed: 12885847].
  • 51. Roh JL, Lee J, Kim EH, Shin D. Plasticity of oral mucosal cell sheets for accelerated and scarless skin wound healing. Oral Oncol. 2017;75:81-8. doi: 10.1016/j.oraloncology.2017.10.024. [PubMed: 29224829].
  • 52. Turabelidze A, Guo S, Chung AY, Chen L, Dai Y, Marucha PT, et al. Intrinsic differences between oral and skin keratinocytes. PLoS One. 2014;9(9). e101480. doi: 10.1371/journal.pone.0101480. [PubMed: 25198578].
  • 53. Shannon DB, McKeown ST, Lundy FT, Irwin CR. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression. Wound Repair Regen. 2006;14(2):172-8. doi: 10.1111/j.1743-6109.2006.00107.x. [PubMed: 16630106].
  • 54. Coleman SR. Structural fat grafting: more than a permanent filler. Plast Reconstr Surg. 2006;118(3 Suppl):108S-20S. doi: 10.1097/01.prs.0000234610.81672.e7. [PubMed: 16936550].
  • 55. Simonacci F, Bertozzi N, Grieco MP, Grignaffini E, Raposio E. Procedure, applications, and outcomes of autologous fat grafting. Ann Med Surg (Lond). 2017;20:49-60. doi: 10.1016/j.amsu.2017.06.059. [PubMed: 28702187].
  • 56. Tsuji W, Rubin JP, Marra KG. Adipose-derived stem cells: Implications in tissue regeneration. World J Stem Cells. 2014;6(3):312-21. doi: 10.4252/wjsc.v6.i3.312. [PubMed: 25126381].
  • 57. Banyard DA, Borad V, Amezcua E, Wirth GA, Evans GR, Widgerow AD. Preparation, Characterization, and Clinical Implications of Human Decellularized Adipose Tissue Extracellular Matrix (hDAM): A Comprehensive Review. Aesthet Surg J. 2016;36(3):349-57. doi: 10.1093/asj/sjv170. [PubMed: 26333991].
  • 58. Sultan SM, Barr JS, Butala P, Davidson EH, Weinstein AL, Knobel D, et al. Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury. J Plast Reconstr Aesthet Surg. 2012;65(2):219-27. doi: 10.1016/j.bjps.2011.08.046. [PubMed: 21962530].
  • 59. Jaspers ME, Brouwer KM, van Trier AJ, Groot ML, Middelkoop E, van Zuijlen PP. Effectiveness of Autologous Fat Grafting in Adherent Scars: Results Obtained by a Comprehensive Scar Evaluation Protocol. Plast Reconstr Surg. 2017;139(1):212-9. doi: 10.1097/PRS.0000000000002891. [PubMed: 27632398].
  • 60. Jaspers MEH, Brouwer KM, van Trier AJM, Middelkoop E, van Zuijlen PPM. Sustainable effectiveness of single-treatment autologous fat grafting in adherent scars. Wound Repair Regen. 2017;25(2):316-9. doi: 10.1111/wrr.12521. [PubMed: 28370844].
  • 61. Sardesai MG, Moore CC. Quantitative and qualitative dermal change with microfat grafting of facial scars. Otolaryngol Head Neck Surg. 2007;137(6):868-72. doi: 10.1016/j.otohns.2007.08.008. [PubMed: 18036412].
  • 62. Rapp SJ, Pan BS, Schwentker AR, Van Aalst J. Effects of Autologous Fat and ASCs on Swine Hypertrophic Burn Scars: A Multimodal Quantitative Analysis. Plastic Reconstruct Surg Glob Open. 2017;5(11).
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments