Journal of Skin and Stem Cell

Published by: Kowsar

GO/TiO2 Hybrid Nanoparticles as New Photosensitizers in Photodynamic Therapy of A375 Melanoma Cancer Cells

Atieh Karbalaei 1 , Zahra Mohammadalipour 1 , Marveh Rahmati 2 , Alireza Khataee 3 and Mohammad Amin Moosavi 1 , *
Authors Information
1 Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
2 Cancer Biology Research Canter, Tehran University of Medical Sciences, Tehran, Iran
3 Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
Article information
  • Journal of Skin and Stem Cell: March 2017, 4 (2); e63984
  • Published Online: June 30, 2016
  • Article Type: Research Article
  • Received: April 12, 2016
  • Accepted: May 28, 2016
  • DOI: 10.5812/jssc.63984

To Cite: Karbalaei A, Mohammadalipour Z, Rahmati M, Khataee A, Moosavi M A. et al. GO/TiO2 Hybrid Nanoparticles as New Photosensitizers in Photodynamic Therapy of A375 Melanoma Cancer Cells, J Skin Stem Cell. 2017 ;4(2):e63984. doi: 10.5812/jssc.63984.

Abstract
Copyright © 2016, Journal of Skin and Stem Cell. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
References
  • 1. Monge-Fuentes V, Muehlmann LA, Longo JP, Silva JR, Fascineli ML, de Souza P, et al. Photodynamic therapy mediated by acai oil (Euterpe oleracea Martius) in nanoemulsion: A potential treatment for melanoma. J Photochem Photobiol B. 2017;166:301-10. doi: 10.1016/j.jphotobiol.2016.12.002. [PubMed: 28024281].
  • 2. Baldea I, Ion RM, Olteanu DE, Nenu I, Tudor D, Filip AG. Photodynamic therapy of melanoma using new, synthetic porphyrins and phthalocyanines as photosensitisers - a comparative study. Clujul Med. 2015;88(2):175-80. doi: 10.15386/cjmed-419. [PubMed: 26528068].
  • 3. Baldea I, Filip AG. Photodynamic therapy in melanoma--an update. J Physiol Pharmacol. 2012;63(2):109-18. [PubMed: 22653896].
  • 4. Chung PS, Ahn JC, Lee SJ, He P, Moon JH. Effect of photodynamic therapy in melanoma skin cancer cell line a375: In vivo study. Med Laser. 2014;3(1):27-30. doi: 10.25289/ml.2014.3.1.27.
  • 5. Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015;5(7):710-23. doi: 10.7150/thno.11387. [PubMed: 25897336].
  • 6. Sharma SK, Huang YY, Hamblin MR. Resistance to Photodynamic Therapy in Cancer. Melanoma resistance to photodynamic therapy. Springer; 2015. p. 229-46.
  • 7. Roblero-Bartolon GV, Ramon-Gallegos E. [Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer]. Gac Med Mex. 2015;151(1):85-98. [PubMed: 25739488].
  • 8. Yin ZF, Wu L, Yang HG, Su YH. Recent progress in biomedical applications of titanium dioxide. Phys Chem Chem Phys. 2013;15(14):4844-58. doi: 10.1039/c3cp43938k. [PubMed: 23450160].
  • 9. Zhang H, Shan Y, Dong L. A comparison of TiO2 and ZnO nanoparticles as photosensitizers in photodynamic therapy for cancer. J Biomed Nanotechnol. 2014;10(8):1450-7. [PubMed: 25016645].
  • 10. Hu Z, Huang Y, Sun S, Guan W, Yao Y, Tang P, et al. Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon. 2012;50(3):994-1004. doi: 10.1016/j.carbon.2011.10.002.
  • 11. Chen C, Long M, Zeng H, Cai W, Zhou B, Zhang J, et al. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. J Mol Catal A: Chem. 2009;314(1-2):35-41. doi: 10.1016/j.molcata.2009.08.014.
  • 12. Akhavan O, Abdolahad M, Abdi Y, Mohajerzadeh S. Synthesis of titania/carbon nanotube heterojunction arrays for photoinactivation of E. coli in visible light irradiation. Carbon. 2009;47(14):3280-7. doi: 10.1016/j.carbon.2009.07.046.
  • 13. Skoda M, Dudek I, Jarosz A, Szukiewicz D. Graphene: One material, many possibilities—application difficulties in biological systems. J Nanomater. 2014;2014:1-11. doi: 10.1155/2014/890246.
  • 14. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, et al. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett. 2011;200(3):201-10. doi: 10.1016/j.toxlet.2010.11.016. [PubMed: 21130147].
  • 15. Shang H, Han D, Ma M, Li S, Xue W, Zhang A. Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. J Photochem Photobiol B. 2017;177:112-23. doi: 10.1016/j.jphotobiol.2017.10.016. [PubMed: 29089229].
  • 16. Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, et al. Photodynamic N-TiO2 Nanoparticle Treatment Induces Controlled ROS-mediated Autophagy and Terminal Differentiation of Leukemia Cells. Sci Rep. 2016;6:34413. doi: 10.1038/srep34413. [PubMed: 27698385].
  • 17. Fujishima A, Zhang X, Tryk D. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63(12):515-82. doi: 10.1016/j.surfrep.2008.10.001.
  • 18. Harada Y, Ogawa K, Irie Y, Endo H, Feril LJ, Uemura T, et al. Ultrasound activation of TiO2 in melanoma tumors. J Control Release. 2011;149(2):190-5. doi: 10.1016/j.jconrel.2010.10.012. [PubMed: 20951750].
  • 19. Li Y, Dong H, Li Y, Shi D. Graphene-based nanovehicles for photodynamic medical therapy. Int J Nanomedicine. 2015;10:2451-9. doi: 10.2147/IJN.S68600. [PubMed: 25848263].
  • 20. Rezaei M, Salem S, Motevalian A. Reduce the band gap of Titanium dioxide by Graphene [In Persian]. 2nd national congress on water reuse, At University of Tehran. Tehran, Iran. 2015.
  • 21. Zhang H, Lv X, Li Y, Wang Y, Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano. 2010;4(1):380-6. doi: 10.1021/nn901221k. [PubMed: 20041631].
  • 22. Fiorillo M, Verre AF, Iliut M, Peiris-Pages M, Ozsvari B, Gandara R, et al. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via "differentiation-based nano-therapy". Oncotarget. 2015;6(6):3553-62. doi: 10.18632/oncotarget.3348. [PubMed: 25708684].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments