Journal of Skin and Stem Cell

Published by: Kowsar

Melanoma and Associated MicroRNAs

Negin Afrang 1 , Mehrnaz Imani 1 and Maryam Honardoost 1 , *
Authors Information
1 Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
Article information
  • Journal of Skin and Stem Cell: December 2016, 3 (4); e63854
  • Published Online: June 30, 2016
  • Article Type: Review Article
  • Received: April 2, 2016
  • Revised: May 8, 2016
  • Accepted: June 5, 2016
  • DOI: 10.5812/jssc.63854

To Cite: Afrang N, Imani M, Honardoost M. Melanoma and Associated MicroRNAs, J Skin Stem Cell. 2016 ; 3(4):e63854. doi: 10.5812/jssc.63854.

Copyright © 2016, Journal of Skin and Stem Cell. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Aftab MN, Dinger ME, Perera RJ. The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma. Arch Biochem Biophys. 2014;563:60-70. doi: 10.1016/ [PubMed: 25065585].
  • 2. Cancer Genome Atlas N. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-96. doi: 10.1016/j.cell.2015.05.044. [PubMed: 26091043].
  • 3. Masliah Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget. 2016;7(25):38892-907. doi: 10.18632/oncotarget.6476. [PubMed: 26646588].
  • 4. Richtig G, Ehall B, Richtig E, Aigelsreiter A, Gutschner T, Pichler M. Function and Clinical Implications of Long Non-Coding RNAs in Melanoma. Int J Mol Sci. 2017;18(4). doi: 10.3390/ijms18040715. [PubMed: 28350340].
  • 5. Davar D, Tarhini AA, Gogas H, Kirkwood JM. Advances in adjuvant therapy: potential for prognostic and predictive biomarkers. Methods Mol Biol. 2014;1102:45-69. doi: 10.1007/978-1-62703-727-3_4. [PubMed: 24258973].
  • 6. Nikolaou V, Stratigos AJ, Tsao H. Hereditary nonmelanoma skin cancer. Semin Cutan Med Surg. 2012;31(4):204-10. doi: 10.1016/j.sder.2012.08.005. [PubMed: 23174490].
  • 7. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, et al. Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol. 2010;146(3):283-7. doi: 10.1001/archdermatol.2010.19. [PubMed: 20231499].
  • 8. Yamaguchi Y, Hearing VJ. Melanocytes and their diseases. Cold Spring Harb Perspect Med. 2014;4(5). doi: 10.1101/cshperspect.a017046. [PubMed: 24789876].
  • 9. Li T, Kung HJ, Mack PC, Gandara DR. Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies. J Clin Oncol. 2013;31(8):1039-49. doi: 10.1200/JCO.2012.45.3753. [PubMed: 23401433].
  • 10. Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010;11(7):537-61. doi: 10.2174/138920210793175895. [PubMed: 21532838].
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. [PubMed: 14744438].
  • 12. Tjwa M, Gu W, Wang X, Zhai C, Zhou T, Xie X. Biological basis of miRNA action when their targets are located in human protein coding region. PLoS ONE. 2013;8(5):63403. doi: 10.1371/journal.pone.0063403.
  • 13. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci U S A. 2007;104(23):9667-72. doi: 10.1073/pnas.0703820104. [PubMed: 17535905].
  • 14. Satzger I, Mattern A, Kuettler U, Weinspach D, Niebuhr M, Kapp A, et al. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21(7):509-14. doi: 10.1111/j.1600-0625.2012.01510.x. [PubMed: 22716245].
  • 15. Noguchi S, Mori T, Otsuka Y, Yamada N, Yasui Y, Iwasaki J, et al. Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem. 2012;287(15):11769-77. doi: 10.1074/jbc.M111.325027. [PubMed: 22354972].
  • 16. Felicetti F, Errico MC, Segnalini P, Mattia G, Care A. MicroRNA-221 and -222 pathway controls melanoma progression. Expert Rev Anticancer Ther. 2008;8(11):1759-65. doi: 10.1586/14737140.8.11.1759. [PubMed: 18983236].
  • 17. Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, et al. The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res. 2008;68(8):2745-54. doi: 10.1158/0008-5472.CAN-07-2538. [PubMed: 18417445].
  • 18. Igoucheva O, Alexeev V. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem Biophys Res Commun. 2009;379(3):790-4. doi: 10.1016/j.bbrc.2008.12.152. [PubMed: 19126397].
  • 19. Bennett PE, Bemis L, Norris DA, Shellman YG. miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma. Physiol Genomics. 2013;45(22):1049-59. doi: 10.1152/physiolgenomics.00116.2013. [PubMed: 24046283].
  • 20. Sun V, Zhou WB, Majid S, Kashani-Sabet M, Dar AA. MicroRNA-mediated regulation of melanoma. Br J Dermatol. 2014;171(2):234-41. doi: 10.1111/bjd.12989. [PubMed: 24665835].
  • 21. Noman MZ, Buart S, Romero P, Ketari S, Janji B, Mari B, et al. Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells. Cancer Res. 2012;72(18):4629-41. doi: 10.1158/0008-5472.CAN-12-1383. [PubMed: 22962263].
  • 22. Gaziel-Sovran A, Segura MF, Di Micco R, Collins MK, Hanniford D, Vega-Saenz de Miera E, et al. miR-30b/30d regulation of GalNAc transferases enhances invasion and immunosuppression during metastasis. Cancer Cell. 2011;20(1):104-18. doi: 10.1016/j.ccr.2011.05.027. [PubMed: 21741600].
  • 23. Luo C, Tetteh PW, Merz PR, Dickes E, Abukiwan A, Hotz Wagenblatt A, et al. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. J Invest Dermatol. 2013;133(3):768-75. doi: 10.1038/jid.2012.357. [PubMed: 23151846].
  • 24. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68(24):10128-36. doi: 10.1158/0008-5472.CAN-08-2148. [PubMed: 19074879].
  • 25. Melis C, Rogiers A, Bechter O, van den Oord JJ. Molecular genetic and immunotherapeutic targets in metastatic melanoma. Virchows Arch. 2017. doi: 10.1007/s00428-017-2113-3. [PubMed: 28357489].
  • 26. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135-47. doi: 10.1056/NEJMoa050092. [PubMed: 16291983].
  • 27. Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, et al. Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell. 2012;151(5):1068-82. doi: 10.1016/j.cell.2012.10.028. [PubMed: 23142051].
  • 28. Segura MF, Greenwald HS, Hanniford D, Osman I, Hernando E. MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis. 2012;33(10):1823-32. doi: 10.1093/carcin/bgs205. [PubMed: 22693259].
  • 29. Boyle GM, Woods SL, Bonazzi VF, Stark MS, Hacker E, Aoude LG, et al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res. 2011;24(3):525-37. doi: 10.1111/j.1755-148X.2011.00849.x. [PubMed: 21435193].
  • 30. Levy C, Khaled M, Iliopoulos D, Janas MM, Schubert S, Pinner S, et al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol Cell. 2010;40(5):841-9. doi: 10.1016/j.molcel.2010.11.020. [PubMed: 21109473].
  • 31. Pinto R, Strippoli S, De Summa S, Albano A, Azzariti A, Guida G, et al. MicroRNA expression in BRAF-mutated and wild-type metastatic melanoma and its correlation with response duration to BRAF inhibitors. Expert Opin Ther Targets. 2015;19(8):1027-35. doi: 10.1517/14728222.2015.1065818. [PubMed: 26156293].
  • 32. Sun M, Wang X, Tu C, Wang S, Qu J, Xiao S. microRNA-216b inhibits cell proliferation and migration in human melanoma by targeting FOXM1 in vitro and in vivo. Cell Biol Int. 2017;41(12):1272-82. doi: 10.1002/cbin.10754. [PubMed: 28225180].
  • 33. Long J, Menggen Q, Wuren Q, Shi Q, Pi X. MiR-219-5p Inhibits the Growth and Metastasis of Malignant Melanoma by Targeting BCL-2. Biomed Res Int. 2017;2017:9032502. doi: 10.1155/2017/9032502. [PubMed: 28884131].
  • 34. Fang W, Fan Y, Fa Z, Xu J, Yu H, Li P, et al. microRNA-625 inhibits tumorigenicity by suppressing proliferation, migration and invasion in malignant melanoma. Oncotarget. 2017;8(8):13253-63. doi: 10.18632/oncotarget.14710. [PubMed: 28129648].
  • 35. Greenberg E, Hershkovitz L, Itzhaki O, Hajdu S, Nemlich Y, Ortenberg R, et al. Regulation of cancer aggressive features in melanoma cells by microRNAs. PLoS One. 2011;6(4):18936. doi: 10.1371/journal.pone.0018936. [PubMed: 21541354].
  • 36. Leibowitz-Amit R, Sidi Y, Avni D. Aberrations in the micro-RNA biogenesis machinery and the emerging roles of micro-RNAs in the pathogenesis of cutaneous malignant melanoma. Pigment Cell Melanoma Res. 2012;25(6):740-57. doi: 10.1111/pcmr.12018. [PubMed: 22958787].
  • 37. Fu TY, Chang CC, Lin CT, Lai CH, Peng SY, Ko YJ, et al. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells. Exp Cell Res. 2011;317(4):445-51. doi: 10.1016/j.yexcr.2010.11.004. [PubMed: 21087605].
  • 38. Zhang K, Wong P, Duan J, Jacobs B, Borden EC, Bedogni B. An ERBB3/ERBB2 oncogenic unit plays a key role in NRG1 signaling and melanoma cell growth and survival. Pigment Cell Melanoma Res. 2013;26(3):408-14. doi: 10.1111/pcmr.12089. [PubMed: 23480537].
  • 39. Noguchi S, Mori T, Hoshino Y, Yamada N, Nakagawa T, Sasaki N, et al. Comparative study of anti-oncogenic microRNA-145 in canine and human malignant melanoma. J Vet Med Sci. 2012;74(1):1-8. [PubMed: 21836381].
  • 40. Georgantas R3, Streicher K, Luo X, Greenlees L, Zhu W, Liu Z, et al. MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D. Pigment Cell Melanoma Res. 2014;27(2):275-86. doi: 10.1111/pcmr.12200. [PubMed: 24289491].
  • 41. Roberts JD. E2F1 amplication and genetic heterogeneity in melanoma. Cancer Biol Ther. 2006;5(6):691-2. doi: 10.4161/cbt.5.6.2926.
  • 42. Limon J, Dal Cin P, Sait SNJ, Karakousis C, Sandberg AA. Chromosome changes in metastatic human melanoma. Cancer Genet Cytogenet. 1988;30(2):201-11. doi: 10.1016/0165-4608(88)90186-0.
  • 43. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem. 2011;286(19):16606-14. doi: 10.1074/jbc.M111.227611. [PubMed: 21454583].
  • 44. Watanabe N, Broome M, Hunter T. Regulation of the human WEE1Hu CDK tyrosine 15-kinase during the cell cycle. EMBO J. 1995;14(9):1878-91. [PubMed: 7743995].
  • 45. Mazar J, Khaitan D, DeBlasio D, Zhong C, Govindarajan SS, Kopanathi S, et al. Epigenetic regulation of microRNA genes and the role of miR-34b in cell invasion and motility in human melanoma. PLoS One. 2011;6(9):24922. doi: 10.1371/journal.pone.0024922. [PubMed: 21949788].
  • 46. Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, et al. Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget. 2012;3(9):1011-25. doi: 10.18632/oncotarget.622. [PubMed: 22948084].
  • 47. Cruz J, Reis-Filho JS, Silva P, Lopes JM. Expression of c-met tyrosine kinase receptor is biologically and prognostically relevant for primary cutaneous malignant melanomas. Oncology. 2003;65(1):72-82. doi: 10.1159/000071207. [PubMed: 12837985].
  • 48. Otsuka T, Takayama H, Sharp R, Celli G, LaRochelle WJ, Bottaro DP, et al. c-Met autocrine activation induces development of malignant melanoma and acquisition of the metastatic phenotype. Cancer Res. 1998;58(22):5157-67. [PubMed: 9823327].
  • 49. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E, Gagnon A, et al. The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med. 2015;373(20):1926-36. doi: 10.1056/NEJMoa1502583. [PubMed: 26559571].
  • 50. Weber JS, D'Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375-84. doi: 10.1016/S1470-2045(15)70076-8. [PubMed: 25795410].
  • 51. De Unamuno Bustos B, Murria Estal R, Perez Simo G, de Juan Jimenez I, Escutia Munoz B, Rodriguez Serna M, et al. Towards personalized medicine in melanoma: Implementation of a clinical next-generation sequencing panel. Sci Rep. 2017;7(1):495. doi: 10.1038/s41598-017-00606-w. [PubMed: 28356599].
  • 52. Martorell-Calatayud A, Nagore E, Botella-Estrada R, Scherer D, Requena C, Serra-Guillen C, et al. Defining fast-growing melanomas: reappraisal of epidemiological, clinical, and histological features. Melanoma Res. 2011;21(2):131-8. doi: 10.1097/CMR.0b013e328342f312. [PubMed: 21183860].
  • 53. Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2011;30(12):1481-8. doi: 10.1038/onc.2010.523. [PubMed: 21102518].
  • 54. Koetz Ploch L, Hanniford D, Dolgalev I, Sokolova E, Zhong J, Diaz Martinez M, et al. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res. 2017;30(3):328-38. doi: 10.1111/pcmr.12578. [PubMed: 28140520].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments