Journal of Skin and Stem Cell

Published by: Kowsar

The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction

Ayoob Rostamzadeh 1 , Maryam Anjomshoa 1 , Soleiman Kurd 2 , Jia-Ke Chai 3 , Faeze Jahangiri 4 , Mohammad Ali Nilforoushzadeh 4 , 5 , * and Sona Zare 4 , *
Authors Information
1 Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
2 School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3 Department of Burn and Plastic Surgery, Burn and Plastic Hospital of PLA General Hospital, Beijing, China
4 Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
5 Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
Corresponding Authors:
Article information
  • Journal of Skin and Stem Cell: June 1, 2015, 2 (2); e60143
  • Published Online: June 23, 2015
  • Article Type: Review Article
  • Received: January 23, 2015
  • Revised: May 8, 2015
  • Accepted: May 30, 2015
  • DOI: 10.17795/jssc30347

To Cite: Rostamzadeh A, Anjomshoa M, Kurd S, Chai J, Jahangiri F, et al. The Role of Wharton’s Jelly Mesenchymal Stem Cells in Skin Reconstruction, J Skin Stem Cell. 2015 ; 2(2):e60143. doi: 10.17795/jssc30347.

Abstract
Copyright © 2015, Skin and Stem Cell Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
Footnotes
References
  • 1. Bongso A, Fong C. Human embryonic stem cells: their nature, properties, and uses. Trends in Stem Cell Biology and Technology. 2009; : 1-17
  • 2. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol. 2009; 20(6): 646-55[DOI][PubMed]
  • 3. Simón C, Pellicer A. Stem cells in human reproduction: basic science and therapeutic potential. 2009;
  • 4. Alison MR, Poulsom R, Forbes S, Wright NA. An introduction to stem cells. J Pathol. 2002; 197(4): 419-23[DOI][PubMed]
  • 5. Smith A. The battlefield of pluripotency. Cell. 2005; 123(5): 757-60[DOI][PubMed]
  • 6. Fu RH, Wang YC, Liu SP, Huang CM, Kang YH, Tsai CH, et al. Differentiation of stem cells: strategies for modifying surface biomaterials. Cell Transplant. 2011; 20(1): 37-47[DOI][PubMed]
  • 7. Weissman IL. Stem cells—scientific, medical, and political issues. N Engl J Med. 2002; 346(20): 1576-9
  • 8. Li L, Xie T. Stem cell niche: structure and function. Annu Rev Cell Dev Biol. 2005; 21: 605-31[DOI][PubMed]
  • 9. Nandedkar T, Narkar M. Stem cell research: its relevance to reproductive biology. Indian J Exp Biol. 2003; 41(7): 724-39[PubMed]
  • 10. Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008; 45(2): 115-20[DOI][PubMed]
  • 11. Yoshida Y, Yamanaka S. iPS cells: a source of cardiac regeneration. J Mol Cell Cardiol. 2011; 50(2): 327-32[DOI][PubMed]
  • 12. Niibe K, Kawamura Y, Araki D, Morikawa S, Miura K, Suzuki S, et al. Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS One. 2011; 6(3)[DOI][PubMed]
  • 13. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell. 2008; 132(4): 567-82[DOI][PubMed]
  • 14. Krampera M, Franchini M, Pizzolo G, Aprili G. Mesenchymal stem cells: from biology to clinical use. Blood Transfus. 2007; 5(3): 120-9[DOI][PubMed]
  • 15. Woods DC, White YA, Tilly JL. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future. Reprod Sci. 2013; 20(1): 7-15[DOI][PubMed]
  • 16. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A. 2011; 108(24): 9875-80[DOI][PubMed]
  • 17. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013; 45[DOI][PubMed]
  • 18. Mundra V, Gerling IC, Mahato RI. Mesenchymal stem cell-based therapy. Mol Pharm. 2013; 10(1): 77-89[DOI][PubMed]
  • 19. Bibber B, Sinha G, Lobba AR, Greco SJ, Rameshwar P. A review of stem cell translation and potential confounds by cancer stem cells. Stem Cells Int. 2013; 2013: 241048[DOI][PubMed]
  • 20. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001; 98(8): 2396-402[PubMed]
  • 21. Chen FM, Wu LA, Zhang M, Zhang R, Sun HH. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives. Biomaterials. 2011; 32(12): 3189-209[DOI][PubMed]
  • 22. He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007; 25(1): 69-77[DOI][PubMed]
  • 23. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974; 17(4): 331-40[PubMed]
  • 24. Weiss DJ, Bertoncello I, Borok Z, Kim C, Panoskaltsis-Mortari A, Reynolds S, et al. Stem cells and cell therapies in lung biology and lung diseases. Proc Am Thorac Soc. 2011; 8(3): 223-72[DOI][PubMed]
  • 25. Yagi H, Soto-Gutierrez A, Kitagawa Y, Tilles AW, Tompkins RG, Yarmush ML. Bone marrow mesenchymal stromal cells attenuate organ injury induced by LPS and burn. Cell Transplant. 2010; 19(6): 823-30[DOI][PubMed]
  • 26. Guan XJ, Song L, Han FF, Cui ZL, Chen X, Guo XJ, et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 2013; 114(2): 323-35[DOI][PubMed]
  • 27. Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011; 9(1): 11-5[DOI][PubMed]
  • 28. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007; 213(2): 341-7[DOI][PubMed]
  • 29. Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992; 13(1): 69-80[PubMed]
  • 30. Butti E, Cusimano M, Bacigaluppi M, Martino G. Neurogenic and non-neurogenic functions of endogenous neural stem cells. Front Neurosci. 2014; 8: 92[DOI][PubMed]
  • 31. Kennea NL, Mehmet H. Neural stem cells. J Pathol. 2002; 197(4): 536-50[DOI][PubMed]
  • 32. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13(12): 4279-95[DOI][PubMed]
  • 33. Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiol. 1996; 166(3): 585-92[DOI][PubMed]
  • 34. Doorn J, van de Peppel J, van Leeuwen JP, Groen N, van Blitterswijk CA, de Boer J. Pro-osteogenic trophic effects by PKA activation in human mesenchymal stromal cells. Biomaterials. 2011; 32(26): 6089-98[DOI][PubMed]
  • 35. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001; 7(6): 259-64[PubMed]
  • 36. Chen L, Tredget EE, Wu PY, Wu Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One. 2008; 3(4)[DOI][PubMed]
  • 37. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005; 105(4): 1815-22[DOI][PubMed]
  • 38. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006; 20(6): 661-9[DOI][PubMed]
  • 39. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001; 187(3): 345-55[DOI][PubMed]
  • 40. Schneider RK, Pullen A, Kramann R, Bornemann J, Knuchel R, Neuss S, et al. Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation. 2010; 79(3): 182-93[DOI][PubMed]
  • 41. Ringe J, Häupl T, Sittinger M. [Mesenchymal stem cells for tissue engineering of bone and cartilage]. Medizinische Klinik (Munich, Germany: 1983). 2003; 98: 35-40
  • 42. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7[DOI][PubMed]
  • 43. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005; 111(2): 150-6[DOI][PubMed]
  • 44. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103(5): 697-705[DOI][PubMed]
  • 45. Lei Z, Yongda L, Jun M, Yingyu S, Shaoju Z, Xinwen Z, et al. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int. 2007; 31(9): 916-23[DOI][PubMed]
  • 46. Wang Y, Nan X, Li Y, Zhang R, Yue W, Yan F, et al. Induction of umbilical cord blood-derived beta2m-c-Met+ cells into hepatocyte-like cells by coculture with CFSC/HGF cells. Liver Transpl. 2005; 11(6): 635-43[DOI][PubMed]
  • 47. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells. 2003; 21(1): 50-60[DOI][PubMed]
  • 48. Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells. 2008; 26(3): 591-9[DOI][PubMed]
  • 49. Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, et al. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem. 2010; 109(4): 747-54[DOI][PubMed]
  • 50. Chen MY, Lie PC, Li ZL, Wei X. Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol. 2009; 37(5): 629-40[DOI][PubMed]
  • 51. Wu LF, Wang NN, Liu YS, Wei X. Differentiation of Wharton's jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A. 2009; 15(10): 2865-73[DOI][PubMed]
  • 52. Angelucci S, Marchisio M, Di Giuseppe F, Pierdomenico L, Sulpizio M, Eleuterio E, et al. Research Proteome analysis of human Wharton's jelly cells during in vitro expansion. Promote Sci. 2010; 8: 18
  • 53. Sakamoto T, Ono H, Saito Y. [Electron microscopic histochemical studies on the localization of hyaluronic acid in Wharton's jelly of the human umbilical cord]. Nihon Sanka Fujinka Gakkai Zasshi. 1996; 48(7): 501-7[PubMed]
  • 54. Turnovcova K, Ruzickova K, Vanecek V, Sykova E, Jendelova P. Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy. 2009; 11(7): 874-85[DOI][PubMed]
  • 55. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 2006; 24(3): 781-92[DOI][PubMed]
  • 56. Conconi MT, Di Liddo R, Tommasini M, Calore C, Parnigotto PP. Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. Open Tissue Eng Regen Med J. 2011; 4(1): 6-20
  • 57. Fong CY, Richards M, Manasi N, Biswas A, Bongso A. Comparative growth behaviour and characterization of stem cells from human Wharton's jelly. Reprod Biomed Online. 2007; 15(6): 708-18[PubMed]
  • 58. Kalaszczynska I, Ferdyn K. Wharton's jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed Res Int. 2015; 2015: 430847[DOI][PubMed]
  • 59. Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, et al. In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem. 2007; 100(3): 608-16[DOI][PubMed]
  • 60. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004; 22(5): 812-22[DOI][PubMed]
  • 61. Neuss S, Schneider RK, Tietze L, Knuchel R, Jahnen-Dechent W. Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells Tissues Organs. 2010; 191(1): 36-46[DOI][PubMed]
  • 62. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, et al. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol. 2008; 103(6): 525-36[DOI][PubMed]
  • 63. Nakagawa H, Akita S, Fukui M, Fujii T, Akino K. Human mesenchymal stem cells successfully improve skin-substitute wound healing. Br J Dermatol. 2005; 153(1): 29-36[DOI][PubMed]
  • 64. Sheng Z, Fu X, Cai S, Lei Y, Sun T, Bai X, et al. Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen. 2009; 17(3): 427-35[DOI][PubMed]
  • 65. Tang M, Weir MD, Xu HH. Mannitol-containing macroporous calcium phosphate cement encapsulating human umbilical cord stem cells. J Tissue Eng Regen Med. 2012; 6(3): 214-24[DOI][PubMed]
  • 66. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007; 67(24): 11687-95[DOI][PubMed]
  • 67. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007; 449(7162): 557-63[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments